Устройство магнитных компасов. Магнитный компас и правила работы с ним Крепление магнитного компаса подвешиванием на шею

Главная / Безопасность

Неотъемлемым мореходным инструментом примерно с конца средневековья является магнитный компас, магнитная стрелка которого, свободно вращающаяся в горизонтальной плоскости, под действием магнитного поля Земли всегда показывает на север. Однако два явления - магнитное склонение и девиация - затрудняют пользование компасом. Причина магнитного склонения заключается в том, что северный и южный магнитные полюсы не совпадают с географическими. Северный магнитный полюс расположен примерно в 1600 км от географического Северного полюса на северо-востоке Канады. Стрелка компаса в месте, не содержащем железа, совпадает с магнитным меридианом и поэтому в зависимости от места снятия показаний с компаса имеет большее или меньшее отклонение. В высоких широтах пользование магнитным компасом для определения направления становится неэффективным. Чем больше расстояние от географического Северного полюса, тем меньше получается ошибка в направлении, поскольку уменьшается угол между северным магнитным полюсом и географическим Северным полюсом. На меридиане, где находится северный магнитный полюс и географический Северный полюс, магнитное склонение разно 0°. В Бискайском заливе оно составляет около 10° к западу, а в Средиземном море - около 2° к востоку. Поскольку магнитный полюс, хотя и очень медленно, меняет свое положение, магнитное склонение должно ежегодно корректироваться. Девиация вызывается постоянным и переменным магнитными полями корабля, которые оказывают дополнительное влияние на магнитную стрелку. Путем установки постоянных магнитов и магнитно-мягкого железа вблизи магнитного компаса (компенсирующие средства, вызывающие аналогичные поля противоположного направления и такой же напряженности, как магнитные поля корабля) исправляются (компенсируются) девиационные погрешности. Компенсация должна повторяться ежегодно. В соответствии с ней составляется таблица отклонений, которая должна постоянно контролироваться в связи с возможными изменениями отклонения в зависимости от магнитной широты и времени. Такие контрольные замеры фиксируются в девиационном дневнике.

Магнитный компас имеет отметку, называемую курсовым румбом; он расположен в диаметральной плоскости судна или параллельно ей и показывает на картушке компаса курс корабля. Картушка компаса представляет собой диск с градуировкой в 360°, где 0° обозначает северное, а 180° - южное направление. На ее нижней стороне укреплены параллельно друг другу магнитные стрелки. Для того чтобы картушка компаса со своей магнитной осью могла устанавливаться в направлении северного магнитного полюса, она крепится на подвижном острие и может вращаться относительно своего центра. Корпус компаса вместе с магнитами, включая картушку, имеет карданов подвес, что обеспечивает его независимость от движений судна и благодаря чему ось вращения картушки всегда вертикальна. Для улучшения компенсации качки используются преимущественно жидкостные компасы, у которых картушка помещается в котелке компаса, заполненном жидкостью. Таким образом, независимо от движений судна в горизонтальной плоскости можно определить курс корабля и части света. На изображении картушки с силуэтом корабля в вертикальной проекции даны курс корабля и магнитное склонение, составляющие в этом месте Северного моря 7° к западу. Это означает, что северный магнитный полюс имеет в этом месте пеленг 7° к западу от географического Северного полюса. Таким образом, в приведенном примере судно следует курсом не 339° а 332°.

Движение гироскопа с карданным подвесом (а) и поплавкового гироскопа (b) под воздействием приложенных к оси сил

1 - гироскоп; 2 - сила; 3 - отклонение следствие приложения силы

С увеличением скорости судна возрастают также требования к точности компаса. На всех морских судах наряду с магнитным компасом используется гирокомпас, позволяющий независимо от всех магнитных влияний определить направление географического Севера и тем самым курс судна. Как известно, ось гироскопа стремится сохранить неизменным свое положение в мировом пространстве. Параллельному смещению оси гироскоп не оказывает противодействия, силам же, стремящимся изменить направление оси противодействует, и стрелка отклоняется в направлении вращения гироскопа. Вместо магнитной стрелки жидкостный компас имеет в качестве указательного элемента гироскоп с электрическим приводом с частотой вращения примерно 20 тыс. об/мин, время пуска которого составляет около 5 ч. Гироскоп крепится или помещается в поплавке таким образом, что его ось всегда стремится занять горизонтальное положение, так как только в таком случае она всегда устанавливается в направлении север - юг. Момент, направленный на север, гироскоп получает при вращении Земли, которое, если смотреть с севера, осуществляется против часовой стрелки; при этом на север обращен тот конец оси гироскопа, относительно которого против часовой стрелки вращается и сам гироскоп.


Установка гироскопа компаса в направлении север - юг на экваторе и на средних широтах

1 - направление движения оси гироскопа; 2 - подъем оси гироскопа из-за вращения Земли; 3 - сила поплавка; 4 - направление вращения Земли.

Проще всего показать действие гироскопа в качестве указателя направления на экваторе. Например, гироскоп приводится в движение при восточно-западном расположении оси, тогда благодаря повороту Земли происходит подъем оси гироскопа. Этому подъему противодействует перпендикулярная сила поплавка, стремящаяся удержать ось гироскопа в горизонтальном положении. При этом гироскоп отклоняется перпендикулярно к направлению силы таким образом, что его ось поворачивается к меридиану, т. е. в направлении север - юг. Когда ось устанавливается в направлении меридиана, т. е. параллельно оси вращения Земли, то благодаря повороту Земли она получает еще параллельное смещение в пространстве, которому не оказывает сопротивления. Вследствие воздействия силы поплавка и инерции гироскопа при вращении в направлении меридиана ось гироскопа отклоняется от направления север - юг, но благодаря вращению Земли и силе поплавка, возникающей на другом конце оси гироскопа, вновь возвращается к меридиану. Таким образом, гироскоп постоянно" колеблется вблизи меридиана (его собственное исходное положение) и вследствие незначительного трения между поплавком и жидкостью (ртутью) очень медленно принимает положение меридиана. Для ускорения этого процесса в установку компаса вмонтирована система стабилизации качки по типу успокоительной цистерны Фрама. Успокоительная цистерна способствует тому, что сила поплавка, стремящаяся повернуть ось гироскопа в горизонтальную плоскость, лишь частично используется для этого поворота, другая же часть при смещении центра тяжести всей гироскопической системы уничтожается за счет переливающейся жидкости.

Принцип демпфирования гироскопа компаса

Гирокомпас имеет так называемую ошибку курса, которую необходимо учитывать в навигации. Скорость судна представляет собой в определенной степени очень медленное вращение Земли, которое оказывает на гироскоп такое же влияние, как и само вращение Земли. Если судно следует курсом юг - север, изменяется горизонтальная плоскость и тем самым направление оси гироскопа в пространстве, в результате чего происходит отклонение оси гироскопа на запад, а при противоположном курсе:- на восток. При движении судна в восточно-западном направлении исключается возникновение ошибки курса, поскольку лишь одно вращение горизонтальной плоскости поперек направления осей создает отклоняющую силу. При вращении горизонта вокруг оси гироскопа, как при восточно-западном курсе, отклонения оси не происходит. Отклонение оси гироскопа от меридиана зависит от скорости судна, его курса и географической широты; величина отклонения берется из таблицы ошибок курса и учитывается при определении курса корабля. Для компенсации сил, возникающих прежде всего при бортовой качке судна, широко используются гирокомпасы с двумя или тремя гироскопами, отличающиеся очень высокой точностью работы в качестве указателей направления и позволяющие снимать показания с точностью до десятых долей градуса. В большинстве случаев к гирокомпасу подключается несколько компасов-репиторов (вторичных компасов). Посредством специального электродвигателя каждое вращение плавающей системы гироскопа (изменение направления) в главном компасе передается вторичным компасам. Поэтому главный компас может устанавливаться в любом месте судна. Как правило, главный компас имеет воздушное охлаждение и устанавливается также на ходовом мостике. Вторичные компасы размещают не только в рулевой рубке на ходовом мостике, но и на крыльях мостика, на навигационном мостике и в аварийном рулевом посту. Кроме того, они могут быть вмонтированы в пеленгаторные компасы, радиопеленгаторы, радиолокационные приборы и в системы автоматического управления судном.


Гироскоп

а - картушка компаса (в упрощенном виде); b - конструкция гирокомпасной системы; с - конструкция компаса с тремя гироскопами; d - конструкция компаса с двумя гироскопами; е - главный компас

1 - пеленгаторный компас; 2 - рулевая колонка; 3 - сигнальное устройство; 4 - задатчик ошибки курса; 5 - вторичный компас; 6 - штекерное устройство; 7 - насос охлаждающей воды; 8 - главный компас; 9 - распределительная коробка; 10 - преобразователь; 11 - коробка управления и включения; 12 - сеть; 13 - пускатель; 14 - курсограф.

Магнитный компас - выдающееся изобретение древнекитайских мыслителей. Естественно, в наши дни прибор используется не настолько часто, как в былые века. Однако туристам, пилотам и морякам без него иногда сложно обойтись. Что же представляет собой магнитный компас? В чем заключается принцип работы устройства? Каковы особенности его применения? Давайте вместе в это разберемся.

Краткий экскурс в историю

Прибор, который является прототипом современного магнитного компаса, был разработан еще в III веке до нашей эры. В это время китайским изобретателям удалось сконструировать устройство, которое указывало стороны света. Древнее приспособление состояло из магнетитовой ложки, что с одной стороны содержала выпуклую шарообразную часть, а с другой тонкий черенок. Элемент укладывался на отполированную с разметкой в виде сторон света. Находясь в свободном вращении, черенок ложки всегда останавливался, указывая на юг.

Как видно, первый магнитный компас имел примитивное строение. Устройство обладало целой массой недостатков. Магнетит, из которого была изготовлена вращающаяся ложка, сложно поддавался обработке. В свою очередь, между выпуклой частью такого указателя направления и поверхностью размеченной пластины создавалось трение. Поэтому компас указывал на юг с существенными погрешностями.

Изобретение было основательно доработано в XI веке. Китайский ученый по имени Шэнь Гуа предложил использовать в качестве указателя сторон света намагниченную иголку. Последняя свободно закреплялась на тонкой шелковой нити. Факт того, что кончик иглы всегда указывает на юг, мыслитель объяснил несовпадением магнитных и географических меридиан.

В XIII веке магнитный компас стал широко применяться европейскими мореплавателями. Если поначалу прибор состоял лишь из намагниченной иглы, которая вращалась подвешенной на нити либо плавала в сосуде на кусочке древесины, то позже конструкцию начали помещать в корпус, закрытый стеклом.

Огромный вклад в совершенствование магнитного компаса внес итальянский изобретатель Флаво Джулио. Именно он предложил размещать подвижный магнитный указатель в середине круглого циферблата, который был разделен на отдельные сектора, согласно сторонам света. Позже стрелку компаса стали фиксировать на карданном подвесе, что способствовало получению более точных показателей во время качки на кораблях.

Принцип действия

В современном компасе магнитная стрелка зафиксирована на оси. Поскольку элемент находится в свободном движении, требуется выбор контрольного направления, от которого будет вестись движение к цели. В магнитном компасе таковым является условная линия, что соединяет Южный и Северный полюс планеты. При удержании прибора в статичном всегда будет останавливаться параллельно указанной линии. Отклонения указателя могут наблюдаться лишь поблизости магнитов либо металлических предметов.

Шкала компаса

В целях определения точных показателей магнитная стрелка компаса перемещается по так называемой картушке. Последняя представляет собой круговую шкалу, на которой содержится 360 делений. Каждое из них соответствует одному градусу. Отсчет ведется от нулевого значения согласно движению часовой стрелки. Указателю на север соответствует деление 0 о. Восточное направление определяется по отметке в 90°. Юг можно идентифицировать по значению 180°, а на запад указывает деление 270°. Представленные значения называют основными компасными румбами. Именно по ним определяются стороны света.

Как проверить исправность компаса?

Чтобы определить работоспособность устройства, необходимо расположить компас в магнитном поле другого предмета. Это может быть металлическое изделие либо кусочек магнита. Важно, чтобы изначально стрелка компаса лежала параллельно линии оси север-юг.

Для проверки устройства необходимо уложить его на ровную поверхность, дождавшись остановки указателя направления. Далее достаточно поднести к компасу предмет с собственным магнитным полем. Как только стрелка начнет вращаться, нужно убрать вещь. Если затем указатель станет в исходную позицию, значит, компас работает исправно.

Применение компаса

Как использовать компас? Магнитное поле Земли позволяет найти правильные ориентиры в любой части света. Чтобы не заблудиться, достаточно отметить для самого себя отправную точку в начале движения. Это может быть любой ориентир, например, населенный пункт, автомобильная дорога, река. От отправной точки необходимо отойти на несколько десятков шагов в нужную сторону и развернуться. Далее останется положить компас на ровную поверхность и повернуть его так, чтобы стрелка лежала параллельно направлению север-юг. Как только это произойдет, станет видно, какой градус на шкале прибора соответствует стартовой точке, а какой целевому курсу. Эти числа необходимо запомнить, ведь они станут важны, если придется двигаться назад по этой условной линии.

  1. При использовании магнитного прибора всегда нужно помнить о том, что на точности его показателей могут отразиться внешние факторы. Например, если в ходе определения координат за спиной у человека находится рюкзак, в котором содержится целая масса металлических предметов, стрелка, что должна указать на север, может давать сбои. Результатом станет хождение человека по кругу либо передвижение с существенным отклонением от цели.
  2. Пользуясь магнитным компасом, всегда нужно принимать во внимание наличие поблизости высоковольтных линий электрического напряжения. Чтобы избежать неточностей в показателях прибора, достаточно отойти от проводов на расстояние порядка 50 метров.
  3. Перед походом крайне важно проверить, все ли в порядке с компасом. Возможно, в ходе предыдущего использования прибор получил повреждения, которые помешают считыванию показателей.

В заключение

Вот мы и выяснили, что такое магнитный компас и как правильно пользоваться прибором. Чтобы всегда находить верное направление на незнакомой местности, важно регулярно упражняться с использованием такого устройства, тренировать наблюдательность и зрительную память.

Напоследок стоит отметить, что сегодня магнитными компасами продолжают пользоваться немногие люди. Ведь на смену таким некогда незаменимым приспособлениям пришли многофункциональные GPS-навигаторы, освоить которые гораздо проще. Однако позволить себе такие дорогостоящие устройства может не каждый. В то же время аккумуляторы электронных навигаторов нередко разряжаются в самый неподходящий момент. Именно в таких ситуациях на помощь придет старый добрый компас, с помощью которого можно отыскать дорогу домой.

Рис.2.4
Картушка 6 компаса может иметь 2, 4, или 6 постоянных, жестко с нею связанных, стержневых магнитов 1 , оси которых параллельны, а размеры попарно одинаковы.

Имеются компасы, в которых вместо стержневых магнитов используется один кольцевой. Это позволяет улучшить динамику картушки МК и снизить уровень девиации высших порядков. Кроме того, снижается трудоемкость изготовления компаса за счет упрощения операций балансировки картушки и исключения необходимости проверок магнитов-стрелок.

Устанавливается картушка на шпильку 10 таким образом, чтобы точка опоры находилась выше её центра масс, что делает подвес устойчивым при наличии внешних возмущающих воздействий, порождаемых, например, качкой судна. В отдельных МК, например, КМ-145 используется обращенная схема подвеса, в которой шпилька связана с картушкой, а топка, в которую она упирается, с котелком. Это менее удачная конструкция так как осложняет процесс замены шпильки в судовых условиях. В модернизированном варианте компаса КМ 145 вернулись к схеме, представленной на рис. 2.4 .

Для снижения давления картушки на опорную шпильку она снабжается поплавком 7 . На верхней плоскости картушки размещается курсовая шкала 5 .

В котелок 9 , куда помещена картушка, заливается морозостойкая жидкость. Эта жидкость должна полностью заполнять его объём. Однако в силу различных причин под стеклом котелка могут образовываться воздушные пузырьки, мешающие снимать информацию с компаса. Для удаления этих пузырьков по периметру котелка установлена перегородка 2 ,выделяющая некоторый объём 3 , заполненный воздухом, в который и перемещаются пузырьки при покачивании котелка компаса. Эта же полость используется для компенсации изменения объема жидкости при изменении ее температуры. Имеются и иные конструктивные варианты решения указанной задачи.

Котелок компаса устанавливается с помощью подшипников в кольце подвеса 4 , которое так же с помощью подшипников монтируется в нактоузе МК. В результате образуется карданов подвес. К нижней части котелка крепится груз 12 , благодаря чему его центр масс смещается вниз относительно оси подвеса, обеспечивая, тем самым, его повышенную устойчивость при наличии качки судна. Здесь же устанавливается индукционный датчик 11 , измеряющий углы поворота картушки, если МК

имеет систему дистанционной передачи информации. В верхней части котелка имеется азимутальная шкала 8 , с помощью которой измеряются курсовые углы ориентиров.

Верхняя часть нактоуза может поворачиваться относительно его нижней части вместе с котелком. Кроме того, сам котелок можно разворачивать относительно верхней части нактоуза. В качестве примера на рис. 2.5 показана верхняя часть нактоуза МК “Сектор”. Здесь, котелок 1 совместно с кардановым подвесом установлен в нактоузе 2 с помощью пружин 6 , предохраняющих его от влияния вибрации и ударов. Котелок снабжен пеленгатором 3 . С помощью шкал 4 и 5 измеряются курс судна и курсовые углы ориентиров, соответственно. Как уже было указано выше, бруски 7 и 8 используются для компенсации девиации МК.

Рис. 2.7

Рис. 2.6
Рассмотренный вариант устройства котелка МК является типовым. Однако наряду с ним применяются и другие конструктивные варианты. Так, с целью снижения влияния качки судна на работу компаса в ряде изделий, например, в компасе КМ-145 (рис. 2.6), поплавок 1 снабжается дополнительным кожухом 2 , сообщающимся с рабочей камерой котелка, в результате чего он оказывается заполненным поддерживающей жидкостью 3 . Наличие указанного кожуха приводит к увеличению периода собственных колебаний подвижной системы компаса, что положительно сказывается на его работе. Так, динамическая устойчивость чувствительного элемента этого компаса в условиях качки превышает устойчивость картушки компаса УКП-М, не имеющего дополнительного кожуха в два раза .

В упомянутых ранее компасах “Галс” (рис. 2.7) для маломерных судов картушка 2 , включающая в себя два магнита 1 , не имеет поплавка. Шкалы с ценой деления 5 0 нанесены на ее внешней горизонтальной 3 и боковой цилиндрической 4 поверхностях. Элементы опорного устройства, входящие в состав картушки, включают в себя корундовый подпятник и коническую деталь 2, предохраняющую ее от боковых перемещений. В корпус картушки вставлен упор-указатель 5 , с шариком на свободном конце, служащий для предотвращения ее вертикального перемещения и одновременно выполняющий роль указателя крена и дифферента судна. Последнее возможно потому, что картушка обладает свойствами физического маятника.

Рис.2.9
Картушка устанавливается на шпильке 11 (рис. 2.9), которая ввинчивается во внутреннюю рамку 1 карданова подвеса. Опоры наружного кольца 2 карданова подвеса устанавливаются в корпусе 4 котелка компаса. Груз 6 обеспечивает вертикальность оси шпильки в процессе качки судна.

Рабочая камера котелка закрыта сверху полусферической прозрачной крышкой 3 и полностью заполнена жидкостью ПМС-5. Вследствие этого возникает увеличение изображения шкалы и ее видимый диаметр возрастает до 160 мм.

В нижней стенке корпуса имеется отверстие 7 , соединяющее рабочую и компенсационную камеры. В компенсационной камере воздушный объем отделен от жидкости эластичной диафрагмой 5. Колебания жидкости, вызванные механическими воздействиями на компас, гасятся чашкой 9 и экраном 10 . В центре дна котелка имеется отверстие, закрытое пробкой 8 , для заполнения котелка жидкостью. Ко дну котелка может крепиться девиационный прибор.

На рис. 2.10 представлен общий вид прибора КМС-160. Здесь 1 – сферическое стекло, 2 – компенсаторы девиации, 3 – нактоуз.

Качество работы МК существенно зависит от динамических характеристик его картушки, которые определяются параметрами собственного и вынужденного ее движений. Рассмотрим основные из этих параметров.

Ко́мпас - прибор для определения горизонтальных направлений на местности. Применяется для определения направления, в котором движется морское, воздушное судно, наземное транспортное средство; направления, в котором идет пешеход; направления на некоторый объект или ориентир. Компасы подразделяются на два основных класса: магнитные компасы типа стрелочных, которыми пользуются топографы и туристы, и немагнитные, такие, как гирокомпас и радиокомпас.

Описание конструкции

Для определения направления в компасе есть картушка – это круговая шкала с 360 делителями (каждая из них отвечает одному угловому градусу), размеченными так, что отчет ведется от нуля по часовой стрелке.

Обычно направлению на север (норд, N) отвечает 0°, на восток (ост, O, E) - 90°, на юг (зюйд, S) - 180°, на запад (вест, W) - 270°. Это главные компасные румбы (страны мира).

Между ними расположены «четвертные» румбы : норд-ост, или (45°), зюйд-ост, или (135°), зюйд-вест, или (225°) и норд-вест, или (315°).

Между четвертными и главными расположены 16 «основных» румбов , таких как, норд-норд-ост и норд-норд-вест (когда-то было еще 16 румбов, таких как, «норд-тень-вест», которые назывались просто румбами).

История возникновения

Модель китайского компаса периода династии Хань

Само слово «компас» произошло от древнебританского «compass», означавшего «круг». Большинство современных историков утверждает, что компас был изобретен в Китае в I в. до н. э. Хотя есть свидетельства, что данный прибор существовал еще во 2-м тыс. до н. э. В любом случае тогда компас являл собой небольшой кусок намагниченного металла, который был прикреплен к деревянной планке, находившейся в сосуде с водой. Такой компас использовался при движении по пустыням. Также им пользовались астрологи. История открытия компаса гласит, что в арабском мире он появился в VIII в., а в европейских странах - только в XII в. Первыми названный прибор переняли у арабов итальянцы. Затем компас начали использовать испанцы, португальцы и французы. Последними о новом приборе узнали немцы и англичане. Но и в то время устройство компаса оставалось максимально простым: магнитная стрелка укреплялась на пробке и опускалась в воду. Именно в воде пробка, дополненная стрелкой, ориентировалась соответствующим образом. В XI в. все в том же Китае появилась стрелка компаса, которую изготовляли из искусственного магнита. Как правило, ее делали в форме рыбки.

Дорожный компас и солнечные часы, XVIII век

История создания компаса была продолжена в XIV веке. Эстафету принял итальянец Ф. Джойя, который сумел значительно усовершенствовать этот прибор. В частности, он решил надеть магнитную стрелку на вертикальную шпильку. Это нехитрое, на первый взгляд, приспособление помогло значительно улучшить компас. Кроме того, к стрелке была прикреплена катушка, разбитая на 16 румбов. Спустя два столетия деление катушки уже составляло 32 румба, а коробку со стрелкой начали помещать в специальном карданном подвесе. Таким образом, качка корабля переставала влиять на компас. В XVII в. компас оборудовали вращающейся линейкой, что помогло более точно отсчитывать направление. В XVIII в. у него появился пеленгатор.

Но на этом история создания компаса не заканчивается. В 1838 г. был найден способ нейтрализации влияния на данное устройство железных изделий корабля. А в 1908 г. появился гирокомпас, ставший основным навигационным прибором. Именно он всегда указывает на север. Сегодня точное направление движения можно узнать при помощи спутниковой навигации, тем не менее много судов оснащены магнитными компасами. Их используют для дополнительной проверки или на случай технических неполадок. Таким образом, история создания компаса насчитывает даже не сотни, а тысячи лет.

Виды

Магнитный компас

В приборе, указывающем направление, должно быть некое опорное направление, от которого отсчитывались бы все другие. В магнитном компасе таким направлением служит линия, соединяющая Северный и Южный полюса Земли. В этом направлении сам собой устанавливается магнитный стержень, если его подвесить так, чтобы он мог свободно поворачиваться в горизонтальной плоскости. Дело в том, что в магнитном поле Земли на магнитный стержень действует вращающая пара сил, устанавливающая его в направлении магнитного поля. В магнитном компасе роль такого стержня играет намагниченная стрелка, которая при измерении сама устанавливается параллельно магнитному полю Земли.

Стрелочный компас

СТРЕЛОЧНЫЙ КОМПАС с арретиром для стрелки. 1 - намагниченная стрелка; 2 - стеклянная или пластиковая крышка с разметкой компасных направлений; 3 - каменный (часовой) подпятник; 4 - арретир для закрепления стрелки в нерабочем положении; 5 - ось.

Это самый распространенный вид магнитного компаса. Он часто применяется в карманном варианте. В стрелочном компасе имеется тонкая магнитная стрелка, установленная свободно в своей средней точке на вертикальной оси, что позволяет ей поворачиваться в горизонтальной плоскости. Северный конец стрелки помечен, и соосно с ней закреплена картушка. При измерении компас необходимо держать в руке или установить на штативе так, чтобы плоскость вращения стрелки была строго горизонтальна. Тогда северный конец стрелки будет указывать на северный магнитный полюс Земли. Компас, приспособленный для топографов, представляет собой пеленгаторный прибор, т.е. прибор для измерения азимута. Он обычно снабжен зрительной трубой, которую поворачивают до совмещения с нужным объектом, чтобы затем считать по картушке азимут объекта.

Жидкостный компас

Жидкосный компас

Жидкостный компас, или компас с плавающей картушкой, - это самый точный и стабильный из всех магнитных компасов. Он часто применяется на морских судах и потому называется судовым. Конструкции такого компаса разнообразны; в типичном варианте он представляет собой наполненный жидкостью "котелок", в котором на вертикальной оси закреплена алюминиевая картушка. По разные стороны от оси к картушке снизу прикреплены пара или две пары магнитов. В центре картушки имеется полый полусферический выступ - поплавок, ослабляющий нажим на опору оси (когда котелок наполнен компасной жидкостью). Ось картушки, пропущенная через центр поплавка, опирается на каменный подпятник, изготовляемый обычно из синтетического сапфира. Подпятник закреплен на неподвижном диске с "курсовой чертой". В нижней части котелка имеются два отверстия, через которые жидкость может переливаться в расширительную камеру, компенсируя изменения давления и температуры. В верхней части котелка закреплено азимутное, или пеленгаторное, кольцо. Оно позволяет определять направление на различные объекты относительно курса судна. Котелок компаса закреплен в своем подвесе на внутреннем кольце универсального (карданного) шарнира, в котором он может свободно поворачиваться, сохраняя горизонтальное положение, в условиях качки. Котелок компаса закрепляется так, что его специальная стрелка или метка, называемая курсовой, либо черная линия, называемая курсовой чертой, указывает на нос судна. При изменении курса судна картушка компаса удерживается на месте магнитами, неизменно сохраняющими свое направление север - юг. По смещению курсовой метки или черты относительно картушки можно контролировать изменения курса.

Гирокомпас

Гирокомпас

Гироко́мпас - механический указатель направления истинного (географического) меридиана, предназначенный для определения курса объекта, а также азимута (пеленга) ориентируемого направления. Его идея была предложена французским учёным Фуко.

Устройство

Простейший гирокомпас состоит из гироскопа, подвешенного внутри полого шара, который плавает в жидкости; вес шара с гироскопом таков, что его центр тяжести располагается на оси шара в его нижней части, когда ось вращения гироскопа горизонтальна.

Принцип действия

Предположим, ротор начал вращаться вокруг своей оси, направление которой отлично от земной оси. В силу закона сохранения момента импульса, ротор будет сохранять свою ориентацию в пространстве. Поскольку Земля вращается, неподвижный относительно Земли наблюдатель видит, что ось гироскопа делает оборот за 24 часа. Такой вращающийся гироскоп сам по себе не является навигационным средством. Для возникновения прецессии ротор удерживают в плоскости горизонта, например, с помощью груза, удерживающего ось ротора в горизонтальном положении по отношению к земной поверхности. В этом случае сила тяжести будет создавать крутящий момент, и ось ротора будет поворачиваться на истинный север. Поскольку груз удерживает ось ротора в горизонтальном положении по отношению к земной поверхности, ось никогда не может совпадать с осью вращения Земли (кроме как на экваторе).

Компасом называют навигационный прибор, предназначенный для определения курса судна и направлений на различные береговые или плавучие предметы, находящиеся в поле зрения судоводителя. Компас используется также для определения направления ветра и дрейфа судна. По показанию магнитного компаса производится управление судном, с его помощью определяют пеленги на береговые предметы. Обычно магнитный компас устанавливается на высоком открытом месте в диаметральной плоскости судна.

В магнитном компасе использовано свойство магнитной стрелки устанавливаться своими концами в направлении действующего на нее магнитного поля. На стрелку судового компаса, кроме магнитного поля земли, действует также магнитное поле, создаваемое на судне железным корпусом и железными предметами оборудования. Под действием этих двух сил магнитная стрелка устанавливается в плоскости компасного меридиана. Магнитный компас подвержен влиянию и других внешних сил, возникающих при качке, поворотах судна, которые выводят стрелку из устойчивого положения. На стрелку компаса влияет также вибрация корпуса от работы двигателя.

У морских магнитных компасов роль стрелки выполняет система из четырех, шести и более тонких магнитов, помещенных в котелок с жидкостью, обеспечивающей быстрое гашение колебаний магнитной системы.

У компасов, которыми пользуются на суше, в том числе и туристских, шкала с градусным делением нанесена на корпусе компаса. Такой компас, установленный на судне, будет вращаться вместе с судном и шкалой отсчета. - ЗАЧЕМ ВСЕ ЭТО??????????????????????????

Воздушный поплавок поддерживает магнитную систему на плаву, что обеспечивает минимальное трение в точке подвеса. Морской магнитный компас снабжен специальным устройством –девиацион-ным прибором, уменьшающим воздействие на магнитную систему компаса магнитного поля железного корпуса судна. С помощью карданового подвеса обеспечивается горизонтальное положение котелка во время качки, крена и дифферента.НЕТ ОСНОВНОЙ ФОРМУЛЫ

3.2.Способы определения поправки компаса.ИМЕЕТСЯ В ВИДУ ГИРОКОМПАС

Поправкой компаса называется величина параметра (курса или пеленга), компенсирующая систематическую ошибку его измерения.

Для определения поправки любого компаса необходимо сравнить истинное и компасное направления на один и тот же ориентир, т.е:

∆МК = ИП – КП.

Определение поправки компаса по створу. ИП створа снимают с карты. КП берут в момент пересечения створной линии. Определение поправки компаса по береговым естественным створам (например, срезам двух мысов). В момент пересечения линии естественных створов снимают компасный пеленг и сравнивают его с направлением линии, снятой с карты, проходящей через срезы двух мысов.

Определение поправки компаса по пеленгу отдаленного ориентира. Этот способ применяют при стоянке судна на якоре, когда место ориентира и стоянки точно известно.

Определение поправки компаса по сличению с другим компасом, поправка которого известна. Способ применяют для определения поправки главного и путевого магнитных компасов путем сличения показаний с гирокомпасом, поправка которого известна. По команде два наблюдателя одновременно замечают курс по обоим компасам. Определяют:

∆МК = (ГКК + ∆ГК) – КК.

Определение поправки компаса при определении места судна по трем пеленгам. При определении места судна по трем пеленгам возможно появление так называемого треугольника погрешностей, т. е. проложенные линии положения не пересекаются в одной точке. Когда имеется уверенность в правильном опознании ориентиров и в отсутствии грубых погрешностей в пеленгах, а треугольник получается большим, то это свидетельствует о погрешности в принятой поправки компаса. Чтобы исключить такую погрешность, а заодно и определить действующую поправку компаса, поступают

следующим образом:

– все пеленги изменяют на 3-5 0 в ту или иную сторону, и после прокладки получают новый треугольник погрешностей;

– через сходственные вершины старого и нового треугольников погрешностей проводят линии, а точку М их пересечения принимают за обсервованное место судна, свободное от влияния систематической погрешности в поправке компаса ∆К;

– точку М соединяют с ориентирами на карте и измеряют транспортиром полученные истинные пеленги. Сравнив их с компасными пеленгами тех же ориентиров, находят три значения поправки компаса ∆К = ИП – КП. Среднее арифметическое из полученных результатов принимают за действительную поправку на данном курсе.

При определении поправки компаса астрономическим способом в качестве компасного направления используется пеленг на светило, измеренный с помощью пеленгатора, а в качестве истинного направления – счислимый азимут данного светила, вычисленный на момент измерения табличным или машинным способом.

Необходимо соблюдать следующие условия:

1. Использовать для уточнения ∆К светила, находящиеся на небольшой высоте (h< 30°) и вблизи диаметральной плоскости судна (КУ< 30°);

2. Измерения следует производить сериями из 3-5 пеленгов с перефиксацией пеленгатора;

3. Пеленга измеряют с точностью до 0,1°, моменты замеров фиксируют с точностью не хуже 2-3 с;

4. Счислимый азимут нужно перевести в круговой счет, т.е. ИП = А к.

Существует несколько способов определения АК по светилам:

1.Определение ∆К по светилу, находящемуся на произвольном азимуте;

2.Определение ∆К по Солнцу в момент его истинного восхода и захода;

3.Определение ∆К по наблюдениям Полярной звезды.

Первый способ – основной и наиболее распространенный, два других являются его частными случаями. Он выполняется в следующей последовательности:

Пример: 24 августа 2006года, Средиземное море. В Т с = 20:46′ ; N=1E; Измерили серию компасных пеленгов: α Скорпиона

– КП ср = 219,5°; Т гр.ср. = 19:45′ 07″ , ϕ с = 33°19,0′ N; λ c = 21°43,0′ E; КК = 196,0°, определить ∆К.

1. Вычисляют по МАЕ δ и t м звезды α Скорпиона на Т гр.ср. =19: 45′ 07″

2. Вычисляют истинный пеленг светила одним из способов:– по таблицам ТВА:

С помощью калькулятора по формулам ПТ: ОБОЗНАЧЕНИЯ СУДОВДЫ НЕ ПОЙМУТ

Ctg A = cosϕ · tgδ · cosec tм - sinϕ · ctg tм

Сtg A = 0,8356∗ - 0,4975 ∗ 1,4525 – 0,5493 · 1,0547 = -1,1825

А = arcctg – 1,1825 = 40,22°; А к = 220,2°

на компьютере с использованием программы "Электронный альманах” А к = 220,2°

3. Рассчитывают поправку компаса:

∆К = ИП – КП = 220,2° - 219,5° = + 0,7°. – обозначения в формулах НЕПОНЯТНЫ

Определение ∆К по Солнцу в момент его восхода и захода:

Если в момент восхода, либо захода Солнца (в момент касания горизонта его нижним краем) измерить его компасный пеленг, то можно быстро и достаточно точно определить поправку компаса. Специфика данного способа состоит в том, что в момент восхода (захода) Солнца высота его центра равна совершенно конкретной величине (- 24,4′ см. МТ-2000), поэтому искомый Азимут является функцией двух параметров – широты и склонения. Поэтому А с легче вычисляется и проще табули-руется. Для расчета азимута Солнца используется таблица 3.37 МТ-2000. Входными аргументами в табл.3.37 являются счислимая широта - ϕ с, снятая с прокладки на момент замера компасного пеленга, и склонение Солнца - δ о, которое выбирают из МАЕ на гринвичский момент восхода (захода). Табличный азимут дан в полукруговом счете; первая буква наименования при этом одноименна со счислимой широтой, а вторая при восходе Солнца – Е, а при заходе – W.

Следует помнить, что полученная таким образом мгновенная поправка компаса, менее точна и надежна, чем полученная основным способом, поэтому её чаще используют только для контроля.

Пример:12 апреля 2006г; Черное море. ϕ с = 44°25,0′ N; λ c = 34°12,0′ E; КК = 92,0°; Т с = 06:08′ ; N=3E; Измерили компасный пеленг Солнца в момент его восхода: КПо = 77,2°; определить ∆К.

1. Определяют гринвичское время восхода и на полученный момент выбирают из МАЕ склонение Солнца:

Т гр = Т с ± N W/E = 06:08′ – 3 = 03: 08′

На Т гр = 03:08′ 12.04.02 из МАЕ - δ о = 08°36,0′ N

2. Входят в табл. 3.37 МТ-2000 с ϕ с = 44°25,0′ N и δ о = 08°36,0′ N и получают на 12 апреля А т = N 77,7° Е, с учетом

интерполяции по ϕ и δ о получают А к = ИП = 77,5°.

3. Вычисляют ∆К = ИП – КП = 77,5° - 77,2° = + 0,3° . ТОЖЕ САМОЕ – НЕПОНЯТНО ЧТО К ЧЕМУ

3.3. Практические способы определения девиации магнитного компаса.

Обычно остаточную девиацию определяют после ее уничтожения, но иногда определение девиации может выполняться как самостоятельная работа. Такая необходимость появляется, если обнаружено заметное расхождение наблюдаемой девиации на отдельных курсах с ее табличными значениями, а также при перевозке металлических грузов, после плавания во льдах, при существенном изменении судном широты.

Различают полное определение девиации для составления таблицы девиации и частичное, на отдельных курсах, с целью контроля работы магнитного компаса.

Для составления таблицы девиацию чаще всего определяют на восьми главных и четвертных компасных курсах, затем по наблюдаемым величинам девиации вычисляют коэффициенты девиации А, В, С, D и Е. Далее по известным коэффициентам рассчитывают таблицу девиации на любое количество курсов, используя формулу (1). В зависимости от величины коэффициентов таблицу девиации вычисляют на 24 или 36 курсов. Если какой-либо коэффициент превышает 3°, таблицу составляют через 10°, а при меньших коэффициентах - через 15°. Аргументом входа в таблицу является компасный курс.

Таблица девиации подписывается лицом, производившим ее определение. В таблицу также заносятся рассчитанные значения коэффициентов девиации.

Определение девиации выполняют на пале или на малом ходу судна, причем прежде, чем приступить к определению девиации на новом курсе, необходимо выждать 3 - 5 мин, необходимых для перемагничивания судна. На каждом курсе следует по возможности определить девиацию из 3 - 5 наблюдений, а результат осреднить. Точность снятия отсчета пеленга или курса должна быть не ниже 0,2°.

Все основные способы определения девиации сводятся к сравнению магнитных направлений (пеленгов, курсов) с направлениями, измеренными по компасу. Для вычисления девиации применяют следующие формулы:

δ = МП - КП,

δ = ОМП - ОКП, (1)

δ = МК - КК

Все способы определения девиации различаются только методом получения величины магнитного пеленга или курса. Основные способы определения девиации являются:

- Определение девиации по створу или по вееру створов - является наиболее точным способом. Сущность способа заключается в том, что в момент пересечения створа замечают пеленг по компасу.

Магнитное направление створа рассчитывают по истинному направлению и величине

Веер створов (рис. 24) позволяет определить девиацию несколько раз на одном курсе. Магнитные направления веера створов даются в лоциях или в описаниях девиационных полигонов. Если в районе определения девиации не имеется створов, нанесенных на карту, то можно использовать створ любых предметов (приметных башен, зданий, мачт, мысов и т.п.). Магнитное направление такого створа приближенно рассчитывают как среднее из восьми направлений, измеренных по компасу на главных и четвертных курсах,

- Определение девиации по пеленгу отдаленного предмета производят, когда отсутствуют створы в районе работ. Чаще этот способ выполняют, когда место судна не меняется или меняется незначительно, т.е. при стоянке судна на девиационном пале, бочках и т.п. Величина магнитного пеленга может быть получена с карты, если место судна известно с высокой точностью. Если же такой возможности нет, опять рассчитывают магнитный пеленг как средний из восьми измеренных компасных на главных и четвертных румбах по формуле (2). При развороте судна на новый курс место его на местности не остается постоянным, и при этом изменяется величина МП. Очевидно, что способ можно применять только тогда, когда изменение пеленга Δ от среднего значения не превысит определенной допустимой величины. Из рис. 25 видно, что между расстоянием до ориентира D, радиусом окружности, внутри которой изменяется положение судна (компаса), r и углом Δ существует соотношение:

если задать Δ = 0,2°, то D = 300r. (3)

Таким образом, например, при r = 100 м расстояние до ориентира должно быть не менее 16,2 мили.

Способ может применяться и на ходу судна, но при этом пеленг на отдаленный предмет берут в тот момент, когда судно проходит в непосредственной близости от заранее установленного буйка или вешки. Примерная схема маневрирования при определении девиации указанным способом приведена на рис. 26.

Определение девиации по сличению с главным магнитным компасом обычно производят у путевого компаса, так как возможности измерения пеленга с него не имеется. На восемь главных и четвертных курсов ложатся по путевому компасу, а магнитный курс рассчитывают по КК главного компаса. Девиацию путевого компаса δп получают по следующим формулам:

МК=ККгл+δгл. δп=МК - ККп (4)

или по рабочей формуле, полученной после подстановки первого уравнения во второе,

δп=ККгл - ККп+δгл. (5)

Сличение показаний компасов, т. е. одновременное фиксирование курса производят 3 - 5 раз и выводят среднее значение.

Определение девиации по взаимным пеленгам можно выполнять, когда на видимости не имеется створов и отдаленных предметов, а представляется возможность свезти на берег компас и установить его на треноге. Место установки компаса должно обеспечивать взаимную видимость компаса и судна.

При определении девиации по какому-нибудь сигналу (спуск обусловленного сигнального флага, команда по радио и т.п.) измеряют одновременно пеленг с берега и судна. Пеленг с берегового компаса представляет собой МП + 180°, поэтому легко рассчитать и величину девиации.

Определение девиации по сличению с гирокомпасом - распространенный способ на судах, имеющих гирокомпас. Сущность способа заключается в том, что магнитный курс получают, определив истинный из показаний гирокомпаса, а склонение выбирают с карты. В процессе определения девиации судно последовательно ложится на восемь главных и четвертных курсов по магнитному компасу. На каждом курсе одновременно замечают (сличают) курсы по гирокомпасу и магнитному компасу.

Расчет девиации производят последовательно по следующим формулам:

ик=гкк+Δгк,

МК = ИК - d, δ=МК - КК

или по рабочей формуле, полученной из них, (6)

δ = ГКК-КК+(ΔГК - d),

где ГКК н ΔГК - курс по гирокомпасу и поправка компаса соответственно.

Сличение выполняют 3 - 5 раз, а полученные девиации осредняют.

Способ следует выполнять на самом малом ходу, избегая поворотов на большой угол, так как при этом сводятся к минимуму погрешности в поправке гирокомпаса от влияния ускорений.

Кроме рассмотренных способов, применяют способ определения девиации по пеленгам небесных светил, если имеется возможность измерить пеленг на светило (Солнце, Луну, звезду) и рассчитать его азимут.

Во время плавания необходимо использовать любую возможность для регулярного определения девиации на отдельных курсах с целью контроля достоверности таблицы девиации. Для этого чаще всего используют определения поправки компаса по створам, по пеленгам небесных светил и по сличению с гирокомпасом.

3.4. Принцип работы гирокомпаса, учет погрешностей в его показаниях. Способы определения поправки гирокомпаса.

Основными приборами курсоуказания является гирокомпас. Основой всех гироскопических курсоуказателей является гироскоп (быстро вращающееся твердое тело), а работа этих курсоуказа-телей основана на свойстве гироскопа сохранять неизменным направление оси вращения в пространстве без действия моментов внешних сил.

Принцип действия гирокомпаса можно описать с помощью упрощенной схемы, приведенной на рисунке 27. Простейший гирокомпас состоит из гироскопа, подвешенного внутри полого шара, который плавает в жидкости; вес шара с гироскопом таков, что его центр тяжести располагается на оси шара в его нижней части, когда ось вращения гироскопа горизонтальна. Предположим, что гирокомпас находится на экваторе, а ось вращения его гироскопа совпадает с направлением запад - восток (позиция a); она сохраняет свою ориентацию в пространстве в отсутствие воздействия внешних сил. Но Земля вращается, совершая один оборот в сутки. Так как наблюдатель, находящийся рядом, вращается вместе с планетой, он видит, как восточный конец (E) оси гироскопа поднимается, а западный (W) опускается; при этом центр тяжести шара смещается к востоку и вверх (позиция б). Однако сила земного притяжения препятствует такому смещению центра тяжести, и в результате ее воздействия ось гироскопа поворачивается так, чтобы совпасть с осью суточного вращения Земли, т. е. с направлением север - юг (это вращательное движение оси гироскопа под действием внешней силы называется прецессией). Когда ось гироскопа совпадет с направлением север - юг (N - S, позиция в), центр тяжести окажется в нижнем положении на вертикали и причина прецессии исчезнет. Поставив метку "Север" (N) на то место шара, в которое упирается соответствующий конец оси гироскопа, и соотнеся ей шкалу с нужными делениями, получают надежный компас. В реальном гирокомпасе предусмотрены компенсация девиации компаса и поправка на широту места. Действие гирокомпаса зависит от вращения Земли и особенностей взаимодействия ротора гироскопа с его подвесом.

а) б) в)

Рис.27 Принцип работы гирокомпаса

Для сокращения времени прихода в меридиан гирокомпасы имеют устройство для ускорен-ного приведения в меридиан. Если с помощью такого устройства установить и удерживать ЧЭ ГК в меридиане с точностью до 2÷3°, то время прихода в положение равновесия сокращается до 1÷1,5 часов (min 45 мин.) Главная ось ЧЭ работающего ГК на движущемся судне вследствие наличия динамических и статических погрешностей располагается по направлению гироскопического меридиана, не совпадающего с истинным меридианом.

Динамические погрешности:

скоростная погрешность, которая возникает вследствие угловой скорости вращения плоскости истинного горизонта из-за движения судна по поверхности Земли. Эта погрешность устраняется в ГК с помощью специального счетно-решающего механизма-корректора ГК (вводом в него ИК, V, φ); инерционные погрешности I и II рода, которые возникают при изменении курса и скорости судна. ГК по окончании маневра приходит в новое положение равновесия через 25-30 мин. Эти погрешности устраняются в ГК регулировкой периода незатухающих колебаний ЧЭ ГК (84,3 мин.) и применением масляного успокоителя в ЧЭ;

погрешность от качки, которая обусловлена раскачиванием ЧЭ ГК относительно его главной оси. Исключается стабилизацией ЧЭ в плоскости горизонта.

Статические погрешности: наличие трения в подвесах гиромоторов; непостоянство скорости вращения роторов гиромоторов; неточная установка основного прибора в ДП судна; действие магнитных полей. Эти погрешности, характеризующие устойчивость работы ГК на неподвижном основании, определяются опытным путем. Если удастся исключить все указанные погрешности, то главная ось ЧЭ ГК устанавливается в направлении истинного меридиана (NИ), а следящая система позволяет непосредственно снимать это направление и передавать на репитеры ГК. Направляющий момент ГК во много раз больше, чем у МК, и не зависит от магнитного поля Земли. Однако с увеличением широты (φ) он уменьшается пропорционально cos φ, и в высоких

широтах (> 75°) ГК работает менее надежно.

© 2024 splav38.ru -- Новости. Советы. Обзоры. Программы. Безопасность